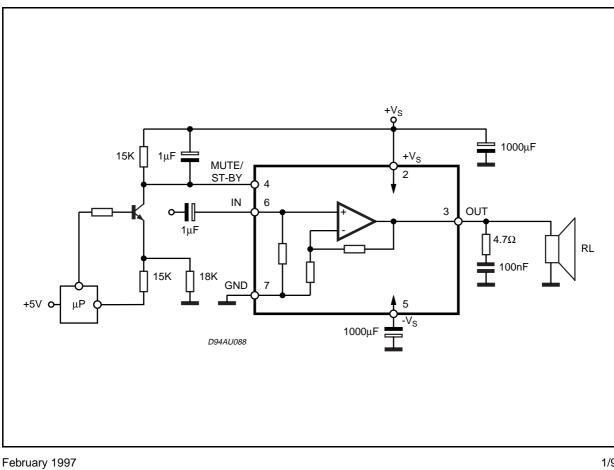


TDA7261

25W MONO AMPLIFIER WITH MUTE/ST-BY

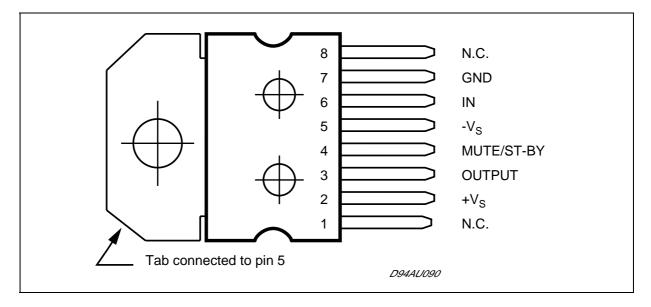
- WIDE SUPPLY VOLTAGE RANGE (UP TO 50V ABS MAX.)
- SPLIT SUPPLY
- **HIGH OUTPUT POWER:**
- 25W @ THD =10%, $R_L = 8\Omega$, $V_S = +20V$ NO POP AT TURN-ON/OFF
- MUTE (POP FREE)
- STAND-BY FEATURE (LOW IQ)
- FEW EXTERNAL COMPONENTS
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION


DESCRIPTION

The TDA7261 is class AB Audio power amplifier assembled in the Multiwatt package, specially de-

Figure 1: Typical Application Circuit

signed for high quality sound application in mono TV chassis.



TDA7261

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	DC Supply Voltage	50	V
Ιo	Output Peak Current (internally limited)	4.5	А
P _{tot}	Power Dissipation $T_{case} = 70^{\circ}C$	30	W
T _{stg} , T _j	Storage and Junction Temperature	-40 to +150	°C

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Description		Value	Unit
R _{th j-case}	Thermal Resistance Junction-case	Max	2.5	°C/W

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Range		<u>+</u> 5		<u>+</u> 22.5	V
lq	Total Quiescent Current			30		mA
Po	Music Output Power (*)	THD = 10%; R _L = 8 Ω ; V _S <u>+</u> 28.5V;		32		W
Po	Output Power	$\begin{array}{l} THD = 10\% \\ R_L = 8\Omega \ ; \\ V_S \pm 16V; \ R_L = 4\Omega \\ THD = 1\% \\ R_L = 8\Omega \ ; \\ \end{array}$	20	25 25 20		W W
THD	Tatal Llama ania Distantian	$V_{\rm S} \pm 16V; R_{\rm L} = 4\Omega$		20		W %
טחו	Total Harmonic Distortion	$R_{L} = 8Ω; P_{O} = 1W; f = 1KHz$ $R_{L} = 8Ω;$ $P_{O} = 0.1 \text{ to } 15W;$ f = 100Hz to 15KHz		0.02	0.5	%
		$R_L = 4\Omega$; $P_O = 1W$; $f = 1KHz$		0.03		%
		$R_L = 4\Omega$; $V_S \pm 16V$; $P_O = 0.1$ to 12W; f = 100Hz to 15KHz			1	%
SR	Slew Rate			10		V/µs
Gv	Closed Loop Voltage Gain		29	30	31	dB
ΔG_V	Voltage Gain Matching			0.2		dB
e _N	Total Input Noise	A Curve f = 20Hz to 22KHz		2.5 3.5	8	μV μV
Ri	Input Resistance		15	20		KΩ
SVR	Supply Voltage Rejection	fr = 100Hz; Vripple = 0.5VRMs		60		dB
Tj	Thermal Shut-down Junction Temperature			145		°C
MUTE FUN	CTION [ref: +Vs]					
VT _{MUTE}	Mute / Play Threshold		-7	-6	-5	V
A _M	Mute Attenuation		60	90		dB
STAND-BY	FUNCTION [ref: +Vs]					
VT _{ST-BY}	Stand-by / Mute Threshold		-3.5	-2.5	-1.5	V
A _{ST-BY}	Stand-by Attenuation			110		dB
Iq ST-BY	Quiescent Current @ Stand-by			3		mA

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $V_S \pm 20V$; $R_L = 8\Omega$; $R_s = 50\Omega$; f = 1KHz; $T_{amb} = 25^{\circ}$ C, unless otherwise specified.)

Note : (*) FULL POWER up to. $V_S = \pm 22.5V$ with $R_L = 8\Omega$ and $V_S = \pm 16V$ with $R_L = 4\Omega$ MUSIC POWER is the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of non linearity) 1 sec after the application of a sinusoidal input signal of frequency 1KHz.

APPLICATIONS SUGGESTION

(Demo Board Schematic)

The recommended values of the external compo-

nents are those shown on the demo board schematic. Different values can be used: the following table can help the designer.

COMPONENTS	RECOMMENDED VALUE	PURPOSE	LARGER THAN RECOMMENDED VALUE	SMALLER THAN RECOMMENDED VALUE	
R1	10KΩ	Mute Circuit	Increase of Dz Biasing Current		
R2	15ΚΩ	Mute Circuit	Vpin # 4 Shifted Downward	Vpin # 4 Shifted Upward	
R3	18KΩ	Mute Circuit	Vpin # 4 Shifted Upward	Vpin # 4 Shifted Downward	
R4	15ΚΩ	Mute Circuit	Vpin # 4 Shifted Upward	Vpin # 4 Shifted Downward	
R5	4.7Ω	Frequency Stability	Danger of Oscillations	Danger of Oscillations	
C1	1μF	Input DC Decoupling		Higher Low Frequency Cutoff	
C2	1μF	St-By/Mute Time Constant	Larger On/Off Time	Smaller On/Of Time	
C3, C5	1000μF	Supply Voltage Bypass		Danger of Oscillations	
C4, C6	0.1µF	Supply Voltage Bypass		Danger of Oscillations	
C7	0.1µF	Frequency Stability			
Dz	5.1V	Mute Circuit			
Q1	BC107	Mute Circuit			

MUTE, STAND-BY TRUTH TABLE

SW1	SW2	
А	А	STAND-BY
А	В	STAND-BY
В	В	MUTE
В	А	PLAY

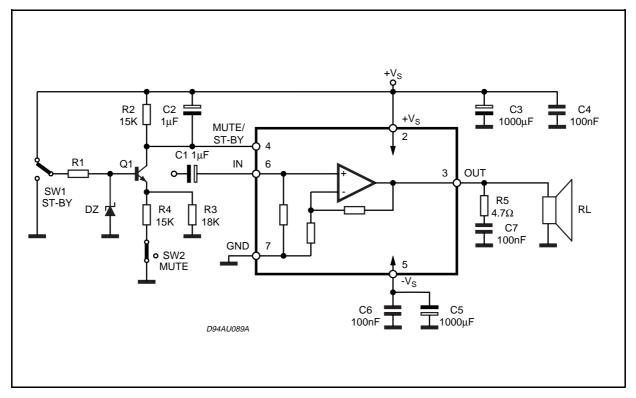
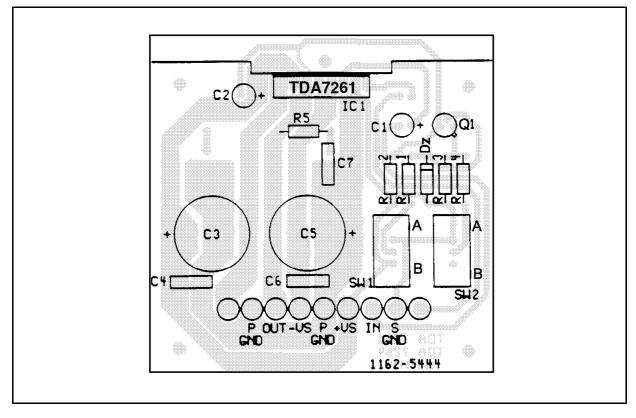



Figure 3: P.C. Board And Component Layout of the Demo Board Schematic (1:1 Scale)

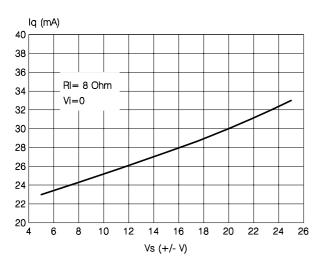
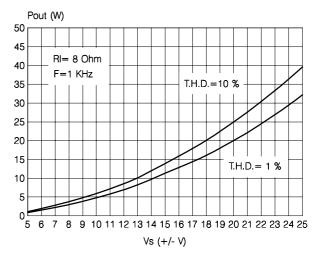
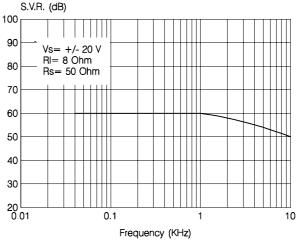
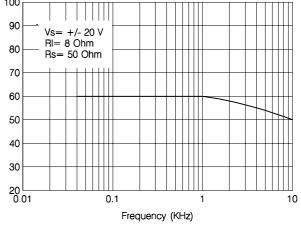
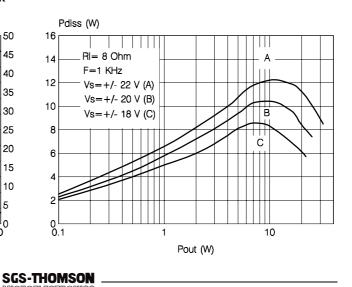
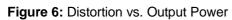
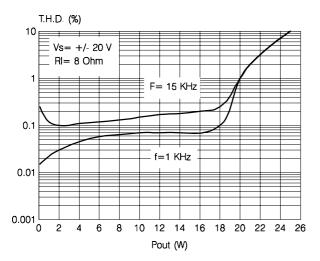


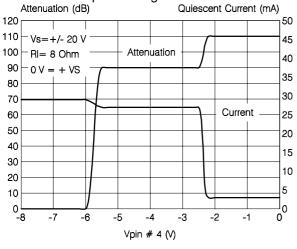
Figure 4: Quiescent Current vs. Supply Voltage

Figure 5: Output Power vs Supply Voltage


Figure 7: Supply Voltage Rejection vs. Fequency

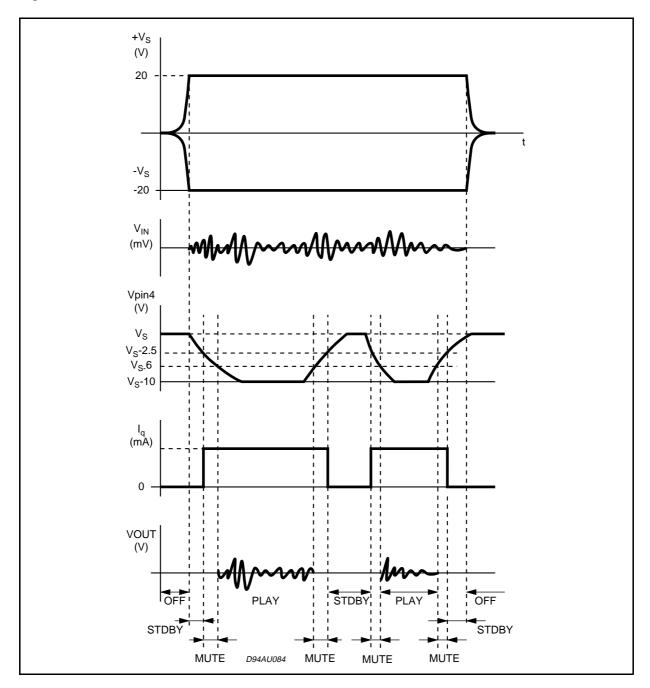




5/

MICROELECTRONICS

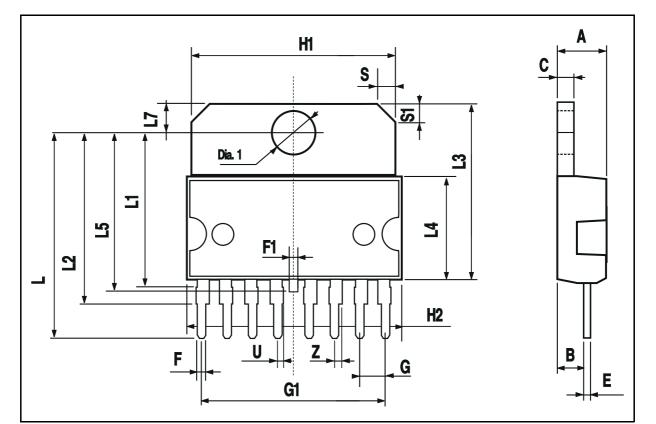
6/9


MUTE STAND-BY FUNCTION

The pin 4 (MUTE/STAND-BY) controls the amplifier status by two different theresholds, referred to $+V_S$.

- When V_{pin4} higher than = +V_S - 2.5V the amplifier is in Stand-by mode and the final stage generators are off.

Figure 10


- When V_{pin4} is between +V_S 2.5V and +V_S 6V the final stage current generators are switched on and the amplifier is in mute mode.
- When V_{pin4} is lower than +V_S 6V the amplifier is play mode.

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
E	0.49		0.55	0.019		0.022	
F	0.78		0.85	0.030		0.033	
G	2.40	2.54	2.68	0.094	0.10	0.105	
G1	17.64	17.78	17.92	0.69	0.70	0.71	
H1	19.6			0.772			
H2			20.2			0.795	
L	20.35		20.65	0.80		0.81	
L1		15.7			0.62		
L2	17.05	17.20	17.35	0.67	0.68	0.68	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
S	1.9		2.6	0.075		0.102	
S1	1.9		2.6	0.075		0.102	
U	0.40		0.55	0.015		0.022	
Z	0.70		0.85	0.028		0.034	
Dia1	3.65		3.85	0.144		0.152	

MULTIWATT8 PACKAGE MECHANICAL DATA

SGS-THOMSON MICROELECTRONICS

8/9

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. © 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.